skip to main content


Search for: All records

Creators/Authors contains: "Choksi, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The hunt is on for dozens of protoplanets hypothesized to reside in protoplanetary discs with imaged gaps. How bright these planets are, and what they will grow to become, depend on their accretion rates, which may be in the runaway regime. Using 3D global simulations, we calculate maximum gas accretion rates for planet masses Mp from 1$\, \mathrm{ M}_{{\oplus }}$ to $10\, \mathrm{ M}_{\rm J}$. When the planet is small enough that its sphere of influence is fully embedded in the disc, with a Bondi radius rBondi smaller than the disc’s scale height Hp – such planets have thermal mass parameters qth ≡ (Mp/M⋆)/(Hp/Rp)3 ≲ 0.3, for host stellar mass M⋆ and orbital radius Rp – the maximum accretion rate follows a Bondi scaling, with $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^2 / (H_{\rm p}/R_{\rm p})^3$ for ambient disc density ρg. For more massive planets with 0.3 ≲ qth ≲ 10, the Hill sphere replaces the Bondi sphere as the gravitational sphere of influence, and $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^1$, with no dependence on Hp/Rp. In the strongly superthermal limit when qth ≳ 10, the Hill sphere pops well out of the disc, and $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^{2/3} (H_{\rm p}/R_{\rm p})^1$. Applied to the two confirmed protoplanets PDS 70b and c, our numerically calibrated maximum accretion rates imply that their Jupiter-like masses may increase by up to a factor of ∼2 before their parent disc dissipates.

     
    more » « less
  2. ABSTRACT

    Gaps imaged in protoplanetary discs are suspected to be opened by planets. We compute the present-day mass accretion rates $\dot{M}_{\rm p}$ of seven hypothesized gap-embedded planets, plus the two confirmed planets in the PDS 70 disc. The accretion rates are based on disc gas surface densities Σgas from C18O observations, and planet masses Mp from simulations fitted to observed gaps. Assuming accretion is Bondi-like, we find in eight out of nine cases that $\dot{M}_{\rm p}$ is consistent with the time-averaged value given by the current planet mass and system age, Mp/tage. As system ages are comparable to circumstellar disc lifetimes, these gap-opening planets may be undergoing their last mass doublings, reaching final masses of $M_{\rm p} \sim 10\rm{\!-\!}10^2 \, M_\oplus$ for the non-PDS 70 planets, and $M_{\rm p} \sim 1\!-\!10 \, M_{\rm J}$ for the PDS 70 planets. For another 15 gaps without C18O data, we predict Σgas by assuming their planets are accreting at their time-averaged $\dot{M}_{\rm p}$. Bondi accretion rates for PDS 70b and c are orders of magnitude higher than accretion rates implied by measured U-band and H α fluxes, suggesting most of the accretion shock luminosity emerges in as yet unobserved wavebands, or that the planets are surrounded by dusty, highly extincting, quasi-spherical circumplanetary envelopes. Thermal emission from such envelopes or from circumplanetary discs, on Hill sphere scales, peaks at wavelengths in the mid-to-far-infrared and can reproduce observed mm-wave excesses.

     
    more » « less
  3. ABSTRACT

    We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, 2 peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, 1 peculiar SN Ic, 10 SNe Ic-BL, 15 SNe IIb, 1 ambiguous SN IIb/Ib/c, and 2 superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modelling multiband light curves, we find that SNe Ic tend to have lower ejecta masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.

     
    more » « less
  4. ABSTRACT

    We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (3 SN 1991bg-like, 3 SN 1991T-like, 4 SNe Iax, 2 peculiar, and 3 super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 d, and the median first observed epoch is ∼4.6 d before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our data set. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardizing SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.

     
    more » « less